Curate, connect, and discover
How to find an asteroid in your natal chart
Asteroid Actor opposite sun and trine ascendant
Asteriod Actor is in the 5H and sextile 3H Jupiter and Inconjuncts NN
Asteroid Alma in the 6th in Capricorn
Asteroid Aphrodite Conjunct Mars in Virgo
Asteroid Aphrodite Conjunct Pluto
Asteroid Aphrodite Conjunct Ascendant
Asteroid Aphrodite Semi-sextile POF
Asteroid Aphrodite Square Lilith
Asteroid Aphrodite Trine Venus
Asteroid Apollo in the 1H Conjunct Ascendant
Asteroid Apollo in Leo in the 10H
Asteroid Apollo Conjunct Venus
Asteroid Arachne in the 1st
Asteroid Aura in the 5H
Asteroid Bellona in 7H in Taurus
Asteroid Bellona Conjunct Mars, Trine Jupiter
Asteroid Casanova opposite Pluto, Trine Neptune
Asteroid Dejanira in the 7th
Asteroid Euterpe in the 4H Biquintile Venus
Asteroid Fama Conjunct Sun
Asteroid Fama Biquintile Ascendant in the 5H
Asteroid Iris in Taurus in the 1st
Asteroid Juno in Aries in the 10th
Asteroid Lilith Quintile Mars
Asteroid Lilith Opposite Pluto
Asteroid Lilith Conjunct Pluto
Asteroid Lilith sextile Midheaven
Asteroid Lilith in Aquarius in the 2nd
Asteroid Lilith in Libra in the 5th
Asteroid Lilith in Scorpio in the 7th
Asteroid Lilith in Aries in the 8th
Asteroid Lilith in Taurus in the 8th
Asteroid Lilith Quintile Bellona
Asteroid Lilith with 7th house stellium
Asteroid Nessus Conjunct Mars in Capricorn
Asteroid Psyche Conjunct Jupiter
Asteroid Terpsichore Conjunct Mars and Trine Jupiter
Asteroid Zavist in the 3H Inconjunct MC
Mercury-Chiron aspects are gifted singers
11H POF aspecting 3H Neptune
11H POF trine 7H Sun and 7H Mercury
POF in the 5th in Sag conjunct Jupiter
Can POF-Venus aspect grant someone physical beauty, even the harsh aspects?
Why does Lilith in the 2nd cause eating disorders?
How would a girl with a Lilith square Ascendant along with a 8H Venus Trine Libra Ascendant be perceived by her peers?
Asteroid Actor in the 1H Libra trining Mars and Uranus in the 5H and sextiling Moon in 3H
Which Lilith should I use?
Does Chiron in the 5th indicate child grooming?
𝐀𝐒𝐓𝐑𝐎 𝐓𝐈𝐏𝐒 ༄⋆✧`° I .⋆♧︎︎︎
hello everyone! this post is just a lil about (some of) the asteroids <3
✧ 𝐊𝐈𝐒𝐒 𝐀𝐒𝐓𝐄𝐑𝐎𝐈𝐃
the kiss asteroid (8267) can show how you kiss! when in aspects with euros (positively) it's the greatest 💋
ect., my kiss is in taurus at 10° which means i have capricorn - so i think id be a very soft, sensual kisser then grow hungry (THIS IS SO WEIRD TALKING ABOUT IT).
✧ 𝐄𝐑𝐎𝐒
the eros asteroid (433) can determine what brings you the most pleasure and how to live the best s3x life. positive aspects with kiss is once again, exquisite
etc., my eros is at aries with 25° which is an aries degree. i can gather that im very passionate and i probably really enjoy some fucked up shit.
✧ 𝐆𝐑𝐎𝐎𝐌 / 𝐁𝐑𝐈𝐄𝐃𝐄
these asteroids (5129 & 19209) can actually determine what your future spouse may look like or personality traits!! i think that's so adorable
etc., my groom is in capricorn at 22° so he's very much a capricorn. his personality could be organised, hardworking and practical or he could have capricorn facial features maybe a broad/moon face and high cheekbones.
etc., my briede is in aries at 20° which means she has scorpio qualities as well. she'd be very passionate, private and genuine person or she'd have aries or scorpio facial features maybe a prominent forehead or small eyes.
✧ 𝐀𝐏𝐇𝐑𝐎𝐃𝐈𝐓𝐄
the aphrodite asteroid (1388) is an asteroid that can represent pleasure and your relations to your physical body.
etc., my aphrodite is an aquarius at 20° which has scorpio energy. so like I said before with euros, im probably really fucking freaky.
✧ 𝐀𝐃𝐎𝐍𝐈𝐒
it's really cute how i did adonis after aphrodite (guess whose next... persephone!) the adonis asteroid (2101) means a lot of things - it can be how people are attracted to you/jealous of you for, qualities you may have and your ideal male!
etc., my adonis is in libra at 2° and it couldn't be more accurate. men who have good sense of self expression but they're also warm and loving but still has ambition? 💋. CHEF KISS.
✧ 𝐏𝐄𝐑𝐒𝐄𝐏𝐇𝐎𝐍𝐄
the persephone asteroid (399) wherever she is place in your chart can mean a place we look at and discover for ourselves where we feel taken advantage of or captive.
my persephone is in sagittarius at 18° which means there's virgo energy - it makes sense. it's squared with my saturn (virgo) which could possibly mean i need to let go of the little things and have more fun with myself/people/environment.
✧ 𝐉𝐔𝐍𝐎
the juno asteroid (3) is the sign of marriage, commitment and soulmates i believe this is means more of what house its in. but here we gooo
my juno is in sagittarius at 28° so that means it has cancer aspects. im guessing my soulmate is going to be fucking hilarious but still sweet and genuine
i also heard that if your juno is in your 5th house it could very well likely mean your childhood crush is/was your soulmate..... tell me why my juno is in 5H. now tell me why my childhood crush had a lot of sagittarius energy but still had the softness of cancer. TELL ME WHY.
ahjaj i miss him
⋆.ೃ࿔*:・⋆.ೃ࿔*:・⋆.ೃ࿔*:・⋆.ೃ࿔*:・ 𝐎𝐓𝐇𝐄𝐑 !
also if a name appears a lot in your life go to astro.com and see if there's an asteroid named after them to see if that affects your life!
the letter j affects my life a lot (specifically this one name) and ive searched it up and this name falls into the 3H which means communicating, and it's true. i communicate with this person a lot and probably will for a long long time
hiii this is just a lil info, there's so many more out there and this is only a brief explanation!! btw this is just how i interpret it and if it doesn't resonate then it doesn't (sorry) im in no way a professional, this is just for a lil fun <333
minisvle© 2022, do not steal or copyright
Please go check out my new scifi story on wattpad and let me know your reviews.
Also let me know of other sites where I can post my story. Wattpad is pretty outdated for these stuff honestly.
https://www.wattpad.com/story/345758876-the-legacy-of-vesta
A Geminid meteor streaks across the sky as the Soyuz TMA-19M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome on Sunday, Dec. 13, 2015, in Kazakhstan. Credit: NASA/Joel Kowsky
Every December, we have a chance to see one of our favorite meteor showers – the Geminids. To help you prepare, we’ve answered some of your most commonly asked questions. Happy viewing, stargazers!
These radar images of near-Earth object 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 2300 UTC), the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the Moon. Credit: Arecibo Observatory/NASA/NSF
The Geminids are caused by debris from a celestial object known as 3200 Phaethon striking Earth’s atmosphere. Phaethon’s origin is the subject of some debate. Some astronomers consider it to be an extinct comet, based on observations showing some small amount of material leaving its surface. Others argue that it has to be an asteroid because of its orbit and its similarity to the main-belt asteroid Pallas.
All meteors appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.” The graphic shows the radiants of 388 meteors with speeds of 35 km/s observed by the NASA Fireball Network in December 2020. All the radiants are in Gemini, which means they belong to the Geminid shower. Credit: NASA
All meteors associated with a shower have similar orbits, and they all appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.”
A Geminid streaks across the sky in this photo from December 2019. Credit: NASA
The Geminid meteor shower is active for much of December, but the peak will occur during the night of Dec. 13 into the morning of Dec. 14, 2023. Meteor rates in rural areas can be upwards of one per minute this year with minimal moonlight to interfere.
As with all meteor showers, all you need is a clear sky, darkness, a bit of patience, and perhaps warm outerwear and blankets for this one. You don’t need to look in any particular direction, as meteors can generally be seen all over the sky. If you want to take photographs, check out these helpful tips.
An infographic based on 2019’s meteor camera data for the Geminids. Credit: NASA
Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible.
A Geminid streaks across the sky in this photo from December 2011. Credit: NASA
According to Bill Cooke, lead for the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, “Most meteors appear to be colorless or white, however the Geminids appear with a greenish hue. They’re pretty meteors!” Depending on the meteor’s chemical composition, the meteor will emit different colors when burned in the Earth’s atmosphere. Oxygen, magnesium, and nickel usually produce green.
Make sure to follow us on Tumblr for your regular dose of space!
It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.
Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.
How does the Sun affect what Lucy might find?
Credits: Astronomical Institute of CAS/Petr Scheirich
The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.
The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.
The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.
Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.
Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space!
Image Credit: NASA/Bill Ingalls
The Perseid meteor shower, one of the biggest meteor showers of the year, will be at its brightest early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. Read on for some tips on how to watch the night sky this week – and to find out: what exactly are the Perseids, anyway?
Credit: NASA/Bill Ingalls
Your best chance to spot the Perseids will be between 2 AM and dawn (local time) the morning of August 12 or 13. Find a dark spot, avoid bright lights (yes, that includes your phone) and get acclimated to the night sky.
Your eyes should be at peak viewing capacity after about 30 minutes; with a clear, dark sky, you could see more than 40 Perseids an hour! If you’re not an early bird, you can try and take a look soon after sunset (around 9 PM) on the 12th, though you may not see as many Perseids then.
Credit: NASA/MEO
If it’s too cloudy, or too bright, to go skywatching where you are, just stay indoors and watch the Perseids online!
Our Meteor Watch program will be livestreaming the Perseids from Huntsville, Alabama on Facebook (weather permitting), starting around 11 p.m. EDT on August 11 and continuing through sunrise.
Because all of a meteor shower’s meteors have similar orbits, they appear to come from the same place in the sky – a point called the radiant.
The radiant for the Perseids, as you might guess from the name, is in the constellation Perseus, found near Aries and Taurus in the night sky.
Credit: NASA/Joel Kowsky
Right! The Perseids are actually fragments of the comet Swift-Tuttle, which orbits within our solar system.
If you want to learn more about the Perseids, visit our Watch the Skies blog or check out our monthly “What’s Up” video series. Happy viewing!
Make sure to follow us on Tumblr for your regular dose of space!
The Geminid meteor shower, one of the biggest meteor showers of the year, will peak this weekend, December 13 to 14. We get a lot of questions about the Geminids—so we’ve put together some answers to the ones we’re most commonly asked. Take a look!
The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”
Image Credit: Arecibo Observatory/NASA/NSF
This year, the peak is during the overnight hours of December 13 and into the morning of December 14. Viewing should still be good on the night of December 14 into the early morning hours of the 15th. Weather permitting, the Geminids can be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14, when the Geminid radiant is highest in your night sky. The higher the radiant – the celestial point in the sky from which meteors appear to originate – rises into the sky, the more meteors you are likely to see.
Image Credit & Copyright: Jeff Dai
Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see the Geminid meteors!
Image Credit: NASA/Bill Dunford
The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.
Image Credit: Jimmy Westlake
Under dark, clear skies, the Geminids can produce up to 120 meteors per hour – but this year, a bright, nearly full moon will hinder observations of the shower. Still, observers can hope to see up to 30 meteors per hour. Happy viewing!
Image Credit & Copyright: Yuri Beletsky
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The path through the solar system is a rocky road. Asteroids, comets, Kuiper Belt Objects—all kinds of small bodies of rock, metal and ice are in constant motion as they orbit the Sun. But what’s the difference between them, anyway? And why do these miniature worlds fascinate space explorers so much? The answer is profound: they may hold the keys to better understanding where we all come from. Here’s 10 things to know about the solar system this week:
This picture of Eros, the first of an asteroid taken from an orbiting spacecraft, came from our NEAR mission in February 2000. Image credit: NASA/JPL
Asteroids are rocky, airless worlds that orbit our Sun. They are remnants left over from the formation of our solar system, ranging in size from the length of a car to about as wide as a large city. Asteroids are diverse in composition; some are metallic while others are rich in carbon, giving them a coal-black color. They can be “rubble piles,” loosely held together by their own gravity, or they can be solid rocks.
Most of the asteroids in our solar system reside in a region called the main asteroid belt. This vast, doughnut-shaped ring between the orbits of Mars and Jupiter contains hundreds of thousands of asteroids, maybe millions. But despite what you see in the movies, there is still a great deal of space between each asteroid. With all due respect to C3PO, the odds of flying through the asteroid belt without colliding with one are actually pretty good.
Other asteroids (and comets) follow different orbits, including some that enter Earth’s neighborhood. These are called near-Earth objects, or NEOs. We can actually keep track of the ones we have discovered and predict where they are headed. The Minor Planet Center (MPC) and Jet Propulsion Laboratory’s Center for Near Earth Object Studies (CNEOS) do that very thing. Telescopes around the world and in space are used to spot new asteroids and comets, and the MPC and CNEOS, along with international colleagues, calculate where those asteroids and comets are going and determine whether they might pose any impact threat to Earth.
For scientists, asteroids play the role of time capsules from the early solar system, having been preserved in the vacuum of space for billions of years. What’s more, the main asteroid belt may have been a source of water—and organic compounds critical to life—for the inner planets like Earth.
The nucleus of Comet 67P/Churyumov-Gerasimenko, as seen in January 2015 by the European Space Agency’s Rosetta spacecraft. Image credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comets also orbit the Sun, but they are more like snowballs than space rocks. Each comet has a center called a nucleus that contains icy chunks of frozen gases, along with bits of rock and dust. When a comet’s orbit brings it close to the Sun, the comet heats up and spews dust and gases, forming a giant, glowing ball called a coma around its nucleus, along with two tails – one made of dust and the other of excited gas (ions). Driven by a constant flow of particles from the Sun called the solar wind, the tails point away from the Sun, sometimes stretching for millions of miles.
While there are likely billions of comets in the solar system, the current confirmed number is 3,535. Like asteroids, comets are leftover material from the formation of our solar system around 4.6 billion years ago, and they preserve secrets from the earliest days of the Sun’s family. Some of Earth’s water and other chemical constituents could have been delivered by comet impacts.
An artist re-creation of a collision in deep space. Image credit: NASA/JPL-Caltech
Meteoroids are fragments and debris in space resulting from collisions among asteroids, comets, moons and planets. They are among the smallest “space rocks.” However, we can actually see them when they streak through our atmosphere in the form of meteors and meteor showers.
This photograph, taken by an astronaut aboard the International Space Station, provides the unusual perspective of looking down on a meteor as it passes through the atmosphere. The image was taken on Aug. 13, 2011, during the Perseid meteor shower that occurs every August. Image credit: NASA
Meteors are meteoroids that fall through Earth’s atmosphere at extremely high speeds. The pressure and heat they generate as they push through the air causes them to glow and create a streak of light in the sky. Most burn up completely before touching the ground. We often refer to them as “shooting stars.” Meteors may be made mostly of rock, metal or a combination of the two.
Scientists estimate that about 48.5 tons (44,000 kilograms) of meteoritic material falls on Earth each day.
The constellation Orion is framed by two meteors during the Perseid shower on Aug. 12, 2018 in Cedar Breaks National Monument, Utah. Image credit: NASA/Bill Dunford
Several meteors per hour can usually be seen on any given night. Sometimes the number increases dramatically—these events are termed meteor showers. They occur when Earth passes through trails of particles left by comets. When the particles enter Earth’s atmosphere, they burn up, creating hundreds or even thousands of bright streaks in the sky. We can easily plan when to watch meteor showers because numerous showers happen annually as Earth’s orbit takes it through the same patches of comet debris. This year’s Orionid meteor shower peaks on Oct. 21.
An SUV-sized asteroid, 2008TC#, impacted on Oct. 7, 2008, in the Nubian Desert, Northern Sudan. Dr. Peter Jenniskens, NASA/SETI, joined Muawia Shaddas of the University of Khartoum in leading an expedition on a search for samples. Image credit: NASA/SETI/P. Jenniskens
Meteorites are asteroid, comet, moon and planet fragments (meteoroids) that survive the heated journey through Earth’s atmosphere all the way to the ground. Most meteorites found on Earth are pebble to fist size, but some are larger than a building.
Early Earth experienced many large meteorite impacts that caused extensive destruction. Well-documented stories of modern meteorite-caused injury or death are rare. In the first known case of an extraterrestrial object to have injured a human being in the U.S., Ann Hodges of Sylacauga, Alabama, was severely bruised by a 8-pound (3.6-kilogram) stony meteorite that crashed through her roof in November 1954.
The largest object in the asteroid belt is actually a dwarf planet, Ceres. This view comes from our Dawn mission. The color is approximately as it would appear to the eye. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Don’t let the name fool you; despite their small size, dwarf planets are worlds that are just as compelling as their larger siblings. Dwarf planets are defined by astronomers as bodies massive enough to be shaped by gravity into a round or nearly round shape, but they don’t have enough of their own gravitational muscle to clear their path of other objects as they orbit the Sun. In our solar system, dwarf planets are mostly found in the Kuiper Belt beyond Neptune; Pluto is the best-known example. But the largest object in the asteroid belt is the dwarf planet Ceres. Like Pluto, Ceres shows signs of active geology, including ice volcanoes.
The Kuiper Belt is a disc-shaped region beyond Neptune that extends from about 30 to 55 astronomical units -- that is, 30 to 55 times the distance from the Earth to the Sun. There may be hundreds of thousands of icy bodies and a trillion or more comets in this distant region of our solar system.
An artist's rendition of the New Horizons spacecraft passing by the Kuiper Belt Object MU69 in January 2019. Image credits: NASA/JHUAPL/SwRI
Besides Pluto, some of the mysterious worlds of the Kuiper Belt include Eris, Sedna, Quaoar, Makemake and Haumea. Like asteroids and comets, Kuiper Belt objects are time capsules, perhaps kept even more pristine in their icy realm.
This chart puts solar system distances in perspective. The scale bar is in astronomical units (AU), with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the Sun to the Earth, which is about 93 million miles or 150 million kilometers. Neptune, the most distant planet from the Sun, is about 30 AU. Image credit: NASA/JPL-Caltech
The Oort Cloud is a group of icy bodies beginning roughly 186 billion miles (300 billion kilometers) away from the Sun. While the planets of our solar system orbit in a flat plane, the Oort Cloud is believed to be a giant spherical shell surrounding the Sun, planets and Kuiper Belt Objects. It is like a big, thick bubble around our solar system. The Oort Cloud’s icy bodies can be as large as mountains, and sometimes larger.
This dark, cold expanse is by far the solar system’s largest and most distant region. It extends all the way to about 100,000 AU (100,000 times the distance between Earth and the Sun) – a good portion of the way to the next star system. Comets from the Oort Cloud can have orbital periods of thousands or even millions of years. Consider this: At its current speed of about a million miles a day, our Voyager 1 spacecraft won’t reach the Oort Cloud for more than 300 years. It will then take about 30,000 years for the spacecraft to traverse the Oort Cloud, and exit our solar system entirely.
This animation shows our OSIRIS-REx spacecraft collecting a sample of the asteroid Bennu, which it is expected to do in 2020. Image credit: NASA/Goddard Space Flight Center
Fortunately, even though the Oort Cloud is extremely distant, most of the small bodies we’ve been discussing are more within reach. In fact, NASA and other space agencies have a whole flotilla of robotic spacecraft that are exploring these small worlds up close. Our mechanical emissaries act as our eyes and hands in deep space, searching for whatever clues these time capsules hold.
A partial roster of our current or recent missions to small, rocky destinations includes:
OSIRIS-REx – Now approaching the asteroid Bennu, where it will retrieve a sample in 2020 and return it to the Earth for close scrutiny.
New Horizons – Set to fly close to MU69 or “Ultima Thule,” an object a billion miles past Pluto in the Kuiper Belt on Jan. 1, 2019. When it does, MU69 will become the most distant object humans have ever seen up close.
Psyche – Planned for launch in 2022, the spacecraft will explore a metallic asteroid of the same name, which may be the ejected core of a baby planet that was destroyed long ago.
Lucy – Slated to investigate two separate groups of asteroids, called Trojans, that share the orbit of Jupiter – one group orbits ahead of the planet, while the other orbits behind. Lucy is planned to launch in 2021.
Dawn – Finishing up a successful seven-year mission orbiting planet-like worlds Ceres and Vesta in the asteroid belt.
Plus these missions from other space agencies:
The Japan Aerospace Exploration Agency (JAXA)’s Hayabusa2– Just landed a series of small probes on the surface of the asteroid Ryugu.
The European Space Agency (ESA)’s Rosetta – Orbited the comet 67P/Churyumov-Gerasimenko and dispatched a lander to its surface.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
So you think you found an exoplanet -- a planet around another star? It’s not as simple as pointing a telescope to the sky and looking for a planet that waves back. Scientists gather many observations and carefully analyze their data before they can be even somewhat sure that they’ve discovered new worlds.
Here are 10 things to know about finding and confirming exoplanets.
This is an illustration of the different elements in our exoplanet program, including ground-based observatories, like the W. M. Keck Observatory, and space-based observatories like Hubble, Spitzer, Kepler, TESS, James Webb Space Telescope, WFIRST and future missions.
The vast majority of planets around other stars have been found through the transit method so far. This technique involves monitoring the amount of light that a star gives off over time, and looking for dips in brightness that may indicate an orbiting planet passing in front of the star.
We have two specialized exoplanet-hunting telescopes scanning the sky for new planets right now -- Kepler and the Transiting Exoplanet Survey Satellite (TESS) -- and they both work this way. Other methods of finding exoplanets include radial velocity (looking for a “wobble” in a star's position caused by a planet’s gravity), direct imaging (blocking the light of the star to see the planet) and microlensing (watching for events where a star passes in front of another star, and the gravity of the first star acts as a lens).
Here’s more about finding exoplanets.
To find a planet, scientists need to get data from telescopes, whether those telescopes are in space or on the ground. But telescopes don’t capture photos of planets with nametags. Instead, telescopes designed for the transit method show us how brightly thousands of stars are shining over time. TESS, which launched in April and just began collecting science data, beams its stellar observations back to Earth through our Deep Space Network, and then scientists get to work.
Researchers combing through TESS data are looking for those transit events that could indicate planets around other stars. If the star’s light lessens by the same amount on a regular basis -- for example, every 10 days -- this may indicate a planet with an orbital period (or “year”) of 10 days. The standard requirement for planet candidates from TESS is at least two transits -- that is, two equal dips in brightness from the same star.
Not all dips in a star's brightness are caused by transiting planets. There may be another object -- such as a companion star, a group of asteroids, a cloud of dust or a failed star called a brown dwarf, that makes a regular trip around the target star. There could also be something funky going on with the telescope’s behavior, how it delivered the data, or other “artifacts” in data that just aren’t planets. Scientists must rule out all non-planet options to the best of their ability before moving forward.
Finding the same planet candidate using two different techniques is a strong sign that the planet exists, and is the standard for “confirming” a planet. That’s why a vast network of ground-based telescopes will be looking for the same planet candidates that TESS discovers. It is also possible that TESS will spot a planet candidate already detected by another telescope in the past. With these combined observations, the planet could then be confirmed. The first planet TESS discovered, Pi Mensae c, orbits a star previously observed with the radial-velocity method on the ground. Scientists compared the TESS data and the radial-velocity data from that star to confirm the presence of planet “c.”
Scientists using the radial-velocity detection method see a star’s wobble caused by a planet’s gravity, and can rule out other kinds of objects such as companion stars. Radial-velocity detection also allows scientists to calculate the mass of the planet.
Other space telescopes may also be used to help confirm exoplanets, characterize them and even discover additional planets around the same stars. If the planet is detected by the same method, but by two different telescopes, and has received enough scrutiny that the scientists are more than 99 percent sure it’s a planet, it is said to be “validated” instead of “confirmed.”
After thoroughly analyzing the data, and running tests to make sure that their result still looks like the signature of a planet, scientists write a formal paper describing their findings. Using the transit method, they can also report the size of the planet. The planet’s radius is related to how much light it blocks from the star, as well as the size of the star itself. The scientists then submit the study to a journal.
Scientific journals have a rigorous peer review process. This means scientific experts not involved in the study review it and make sure the findings look sound. The peer-reviewers may have questions or suggestions for the scientists. When everyone agrees on a version of the study, it gets published.
When the study is published, scientists can officially say they have found a new planet. This may still not be the end of the story, however. For example, the TRAPPIST telescope in Chile first thought they had discovered three Earth-size planets in the TRAPPIST-1 system. When our Spitzer Space Telescope and other ground-based telescopes followed up, they found that one of the original reported planets (the original TRAPPIST-1d) did not exist, but they discovered five others --bringing the total up to seven wondrous rocky worlds.
Confirmed planets get added to our official catalog. So far, Kepler has sent back the biggest bounty of confirmed exoplanets of any telescope -- more than 2,600 to date. TESS, which just began its planet search, is expected to discover many thousands more. Ground-based follow-up will help determine if these planets are gaseous or rocky, and possibly more about their atmospheres. The forthcoming James Webb Space Telescope will be able to take a deeper look at the atmospheres of the most interesting TESS discoveries.
Scientists sometimes even uncover planets with the help of people like you: exoplanet K2-138 was discovered through citizen scientists in Kepler’s K2 mission data. Based on surveys so far, scientists calculate that almost every star in the Milky Way should have at least one planet. That makes billions more, waiting to be found! Stay up to date with our latest discoveries using this exoplanet counter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Mars is closest to Earth since 2003!
July’s night skies feature Mars opposition on the 27th, when Mars, Earth, and the Sun all line up, and Mars’ closest approach to Earth since 2003 on the 31st.
If you've been sky watching for 15 years or more, then you'll remember August 2003, when Mars approached closer to Earth than it had for thousands of years.
It was a very small percentage closer, but not so much that it was as big as the moon as some claimed.
Astronomy clubs everywhere had long lines of people looking through their telescopes at the red planet, and they will again this month!
If you are new to stargazing, this month and next will be a great time to check out Mars.
Through a telescope, you should be able to make out some of the light and dark features, and sometimes polar ice. Right now, though, a huge Martian dust storm is obscuring many features, and less planetary detail is visible.
July 27th is Mars opposition, when Mars, Earth, and the Sun all line up, with Earth directly in the middle.
A few days later on July 31st is Mars' closest approach. That's when Mars and Earth are nearest to each other in their orbits around the Sun. Although there will be a lot of news focusing on one or the other of these two dates, Mars will be visible for many months.
By the end of July, Mars will be visible at sunset.
But the best time to view it is several hours after sunset, when Mars will appear higher in the sky.
Mars will still be visible after July and August, but each month it will shrink in apparent size as it travels farther from Earth in its orbit around the Sun.
On July 27th a total lunar eclipse will be visible in Australia, Asia, Africa, Europe and South America.
For those viewers, Mars will be right next to the eclipsing moon!
Next month will feature August's summer Perseids. It's not too soon to plan a dark sky getaway for the most popular meteor shower of the year!
Watch the full What’s Up for July Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
With the Human Exploration Research Analog (HERA) habitat, we complete studies to prepare us for exploration to asteroids, Mars, and the Moon… here on Earth! The studies are called analogs, and they simulate space missions to study how different aspects of deep space affect humans. During a HERA mission, the crew (i.e., the research participants) live and work very much as astronauts do, with minimal contact with anyone other than Mission Control for 45 days.
The most recent study, Mission XVII, just “returned to Earth” on June 18. (i.e., the participants egressed, or exited the habitat at our Johnson Space Center in Houston after their 45-day study.) We talked with the crew, Ellie, Will, Chi, and Michael, about the experience. Here are some highlights!
HERA Mission VXII participants (from left to right) Ellie, Will, Chi, and Michael.
“My master’s is in human factors,” said Chi, who studies the interaction between humans and other systems at Embry-Riddle Aeronautical University. “I figured this would be a cool way to study the other side of the table and actually participate in an analog.” For Michael, who holds a PhD in aerospace engineering and researches immunology and radio biology, it was an opportunity to experience life as an astronaut doing science in space. “I’ve flown [experiments] on the space station and shuttle,” he said. “Now I wanted to see the other side.” For Will, a geosciences PhD, it provided an opportunity to contribute to space exploration and neuroscience, which he considers two of the biggest fields with the most potential in science. “Here, we have this project that is the perfect intersection of those two things,” he said. And Ellie, a pilot in the Air Force, learned about HERA while working on her master’s thesis on Earth and space analogs and how to improve them for deep-space studies. “A lot of my interests are similar to Chi’s,” she said. “Human factors and physiological aspects are things that I find very fascinating.”
HERA Mission VXII patch, which reads “May the Force be with you” in Latin and features Star Wars iconography. It’s a reference to the mission’s start date, May 4th aka Star Wars Day!
“We did!” They said …with a little the help from Michael’s brother, who is a designer. He drew several different designs based on the crew’s ideas. They picked one and worked together on tweaks. “We knew we were going [inside the habitat] on May Fourth,” Michael said. “We knew it would be Star Wars Day. So we did a Star Wars theme.” The patch had to come together fairly quickly though, since a Star Wars Day “launch” wasn’t the initial plan. “We were supposed to start two weeks earlier,” Ellie said. “It just so happened the new start date was May the Fourth!” Along with the Star Wars imagery, the patch includes a hurricane symbol, to pay tribute to hurricane Harvey which caused a previous crew to end their mission early, and an image of the HERA habitat. Will joked that designing the patch was “our first team task.”
HERA Mission XVII crew looking down the ladders inside the habitat.
“It was a decent amount,” Michael said. “I could have used more on the harder days, but in a way it’s good we didn’t have more because it’s harder to stay awake when you have nothing to do.” (The mission included a sleep reduction study, which meant the crew only got five hours of sleep a night five days a week.) “With the time I did have, I read a lot,” he said. He also drew, kept a journal, and “wrote bad haikus.” Because of the sleep study, Ellie didn’t read as much. “For me, had I tried to read or sit and do anything not interactive, I would have fallen asleep,” she said.
The crew’s art gallery, where they hung drawing and haikus they wrote.
Journaling and drawing were popular ways to pass the time. “We developed a crew art gallery on one of the walls,” Will said. They also played board games—in particular a game where you score points by making words with lettered tiles on a 15×15 grid. (Yes that one!) “Playing [that game] with two scientists wasn’t always fun though,” Ellie joked, referencing some of the more obscure vocabulary words Will and Michael had at the ready. “I was like, ‘What does that word mean?’ ‘Well that word means lava flow,” she said laughing. (The rest of the crew assured us she fared just fine.)
Chi tried reading, but found it difficult due to the dimmed lights that were part of an onboard light study. She took on a side project instead: 1000 paper cranes. “There is a story in Japan—I’m half Japanese—that if you make a 1000 cranes, it’s supposed to grant you a wish,” she said. She gave hers to her grandmother.
The whole crew having dinner together on “Sophisticated Saturdays!” From left to right: Will, Ellie, Chi, and Michael. They’re wearing their Saturday best, which includes the usual research equipment.
On weekends, the crew got eight hours of sleep, which they celebrated with “Sophisticated Saturdays!” “Coming in, we all brought an outfit that was a little fancy,” Ellie said. (Like a tie, a vest, an athletic dress—that kind of thing.) “We would only put it on Saturday evenings, and we’d have dinner on the first level at the one and only table we could all sit at and face each other,” she said. “We would pretend it was a different fancy restaurant every week.”
The table set for a “civilized” Saturday dinner. Once the crew’s hydroponics grew, they were able to add some greenery to the table.
“It was a way to feel more civilized,” Will said, who then offered another great use of their free time: establishing good habits. “I would use the free time to journal, for example. I’d just keep it up every day. That and stretching. Hydrating. Flossing.”
HERA personnel and the monitors they use for a typical HERA mission.
“I was always aware of it,” Michael said, “but I don’t think it changed my behavior. It’s not like I forgot about it. It was always there. I just wasn’t willing to live paranoid for 45 days.” Ellie agreed. “It was always in the back of my mind,” she said, further adding that they wore microphones and various other sensors. “We were wired all the time,” she said.
After the study, the crew met up with the people facilitating the experiments, sometimes for the first time. “It was really fun to meet Mission Control afterwards,” Will said. “They had just been this voice coming from the little boxes. It was great getting to meet them and put faces to the voices,” he said. “Of course, they knew us well. Very well.”
For more information on HERA, visit our analogs homepage.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Jupiter and Venus at sunset, Mars, Saturn and Vesta until dawn.
First up is Venus. It reaches its highest sunset altitude for the year this month and sets more than two hours after sunset.
You can't miss Jupiter, only a month after its opposition--when Earth was directly between Jupiter and the Sun.
The best time to observe Jupiter through a telescope is 10:30 p.m. at the beginning of the month and as soon as it's dark by the end of the month.
Just aim your binoculars at the bright planet for a view including the four Galilean moons. Or just enjoy Jupiter with your unaided eye!
Saturn is at opposition June 27th, when it and the Sun are on opposite sides of Earth. It rises at sunset and sets at sunrise. Great Saturn viewing will last several more months. The best views this month will be just after midnight.
All year, the rings have been tilted wide open--almost 26 degrees wide this month--giving us a great view of Saturn's distinctive rings.
The tilt offers us a view of the north polar region, so exquisitely imaged by the Cassini spacecraft.
Near Saturn, the brightest asteroid--Vesta--is so bright that it can be seen with your unaided eye. It will be visible for several months.
A detailed star chart will help you pick out the asteroid from the stars. The summer Milky way provides a glittery backdrop.
Finally, Mars grows dramatically in brightness and size this month and is visible by 10:30 p.m. by month end.
The best views are in the early morning hours. Earth's closest approach with Mars is only a month away. It's the closest Mars has been to us since 2003.
Watch the full What’s Up for June Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.