10 Ways To Celebrate Pi Day With Us On March 14

10 Ways to Celebrate Pi Day with Us on March 14

On March 14, we will join people across the U.S. as they celebrate an icon of nerd culture: the number pi. 

So well known and beloved is pi, also written π or 3.14, that it has a national holiday named in its honor. And it’s not just for mathematicians and rocket scientists. National Pi Day is widely celebrated among students, teachers and science fans, too. Read on to find out what makes pi so special, how it’s used to explore space and how you can join the celebration with resources from our collection.

image

1—Remind me, what is pi?

Pi, also written π, is the Swiss Army knife of numbers. No matter how big or small a circle – from the size of our universe all the way down to an atom or smaller – the ratio of a circle’s circumference (the distance around it) to its diameter (the distance across it) is always equal to pi. Most commonly, pi is used to answer questions about anything circular or spherical, so it comes in handy especially when you’re dealing with space exploration.

image

2—How much pi do you need?

For simplicity, pi is often rounded to 3.14, but its digits go on forever and don’t appear to have any repeating patterns. While people have made it a challenge to memorize record-breaking digits of pi or create computer programs to calculate them, you really don’t need that many digits for most calculations – even at NASA. Here’s one of our engineers on how many decimals of pi you need.

image

3—Officially official.

Pi pops up in everything from rocket-science-level math to the stuff you learn in elementary school, so it’s gained a sort of cult following. On March 14 (or 3/14 in U.S. date format) in 1988, a physicist at the San Francisco Exploratorium held what is thought to be the first official Pi Day celebration, which smartly included the consumption of fruit pies. Math teachers quickly realized the potential benefits of teaching students about pi while they ate pie, and it all caught on so much that in 2009, the U.S. Congress officially declared March 14 National Pi Day. Here’s how to turn your celebration into a teachable moment.

image

4—Pi helps us explore space!

Space is full of circular and spherical features, and to explore them, engineers at NASA build spacecraft that make elliptical orbits and guzzle fuel from cylindrical fuel tanks, and measure distances on circular wheels. Beyond measurements and space travel, pi is used to find out what planets are made of and how deep alien oceans are, and to study newly discovered worlds. In other words, pi goes a long way at NASA.

image

5—Not just for rocket scientists.

No Pi Day is complete without a little problem solving. Even the math-averse will find something to love about this illustrated math challenge that features real questions scientists and engineers must answer to explore and study space – like how to determine the size of a distant planet you can’t actually see. Four new problems are added to the challenge each year and answers are released the day after Pi Day.

image

6—Teachers rejoice.

For teachers, the question is not whether to celebrate Pi Day, but how to celebrate it. (And how much pie is too much? Answer: The limit does not exist.) Luckily, our Education Office has an online catalog for teachers with all 20 of its “Pi in the Sky” math challenge questions for grades 4-12. Each lesson includes a description of the real-world science and engineering behind the problem, an illustrated handout and answer key, and a list of applicable Common Core Math and Next Generation Science Standards.

image

7—How Do We celebrate?

In a way, we celebrate Pi Day every day by using pi to explore space. But in our free time, we’ve been known to make and eat space-themed pies, too! Share your own nerdy celebrations with us here.

image

8—A pop-culture icon.

The fascination with pi, as well its popularity and accessibility have made it a go-to math reference in books, movies and television. Ellie, the protagonist in Carl Sagan’s book “Contact,” finds a hidden message from aliens in the digits of pi. In the original “Star Trek” series, Spock commanded an alien entity that had taken over the computer to compute pi to the last digit – an impossible task given that the digits of pi are infinite. And writers of “The Simpsons,” a show known for referencing math, created an episode in which Apu claims to know pi to 40,000 digits and proves it by stating that the 40,000th digit is 1.

image

9—A numbers game.

Calculating record digits of pi has been a pastime of mathematicians for millennia. Until the 1900s, these calculations were done by hand and reached records in the 500s. Once computers came onto the scene, that number jumped into the thousands, millions and now trillions. Scientist and pi enthusiast Peter Trueb holds the current record – 22,459,157,718,361 digits – which took his homemade computer 105 days of around-the-clock number crunching to achieve. The record for the other favorite pastime of pi enthusiasts, memorizing digits of pi, stands at 70,030.

image

10—Time to throw in the tau?

As passionate as people are about pi, there are some who believe things would be a whole lot better if we replaced pi with a number called tau, which is equal to 2π or 6.28. Because many formulas call for 2π, tau-enthusiasts say tau would provide a more elegant and efficient way to express those formulas. Every year on Pi Day, a small debate ensues. While we won’t take sides, we will say that pi is more widely used at NASA because it has applications far beyond geometry, where 2π is found most often. Perhaps most important, though, for pi- and pie-lovers alike is there’s no delicious homonym for tau.

Enjoy the full version of this article HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

9 years ago
Hello Everyone.  This Is NASA Astronaut Peggy Whitson Ready To Answer Your Questions About Being An

Hello everyone.  This is NASA astronaut Peggy Whitson ready to answer your questions about being an astronaut, mission training, and what it’s like to live in space.

Have a question for me? Ask it here, then watch the answers here.

9 years ago

Seven Reasons Why Rover Challenge is Serious Business

Prizes, awards and a year’s worth of bragging rights are at stake during our annual Human Exploration Rover Challenge. Year after year, student teams from across the world design, build and race rovers against the clock and each other.

With a space-themed obstacle course, unique rovers, competitive racing, our exhibits and dozens of international teams… it’s everything cool about STEM (science, technology, engineering and mathematics) and space exploration. 

Here are the “must-know” details for this year’s event:

1. Bumps, Bruises and Battle Scars

Seven Reasons Why Rover Challenge Is Serious Business

Our space-themed obstacle course often brings racers to their knees, literally. This daunting three-quarter-mile long course is difficult to traverse and isn’t for the faint of heart. It uses both lunar and Mars-themed obstacles to simulate the types of terrain found on distant planets, asteroids or moons.

Plus, teams must race their rovers in, on and around full-scale rockets and space vehicle exhibits on display at the U.S. Space & Rocket Center – the official visitor center for NASA’s Marshall Space Flight Center, both in Huntsville, Alabama. See just how difficult and wild the course can be in our Flickr gallery.

2. Homemade Wheels Only

Seven Reasons Why Rover Challenge Is Serious Business

Rover teams must design and fabricate their own original, or “homemade” wheels. In-Situ Resource Utilization is an important component for our future missions to Mars, asteroids or other planets.

Astronauts can never simply purchase wheels at the store… and neither can our rover teams. Teams must not use any “off-the-shelf” wheels on their rover. By wheels, this means any component used for contact, traction or mobility on the surface of the obstacle course, including, but not limited to wheels, tracks, treads or belts.

And, as in years past, teams are not allowed to incorporate inflated (or un-inflated) pneumatic tires. Inflated tires would be considered an off-the-shelf product, not eligible under the current rules.

3. New “Sample Retrieval” Component Added

Seven Reasons Why Rover Challenge Is Serious Business

Teams may choose to compete in this optional challenge, collecting four samples (liquid, small pebbles, large rocks and soil) using a mechanical arm or a grabber they design and build. Teams must collect a soil sample and liquid sample while driving their rover, as well as collect rock samples (both large and small) while off the rover, all within a 25-minute time limit.  The “Sample Retrieval” challenge highlights our deep-space exploration goals. Teams competing are eligible for the $250 prize awarded to the winner of each high school and college/university division.

4. Caution: Real STEM @work

Seven Reasons Why Rover Challenge Is Serious Business

The sights and sounds of welding, grinding and computer programming are prevalent in this hands-on, experiential activity where students solve similar problems faced by our workforce. Rover Challenge provides a unique test-bed to get students involved in real-world research and development. Their progress and success may glean potential technologies for future exploration of Mars and beyond.

5. Draws Inspiration from Apollo and Journey to Mars

Seven Reasons Why Rover Challenge Is Serious Business

Rover Challenge was inspired by the historic success of the lunar rovers from the Apollo missions, each one built by engineers and scientists at NASA Marshall. While we continue to honor our past achievements, we now highlight future accomplishments on deep-space exploration missions to Mars, asteroids or other planets. The addition of the “Sample Return” component and the Martian obstacles emphasize our commitment toward space exploration.

6. Our International Spirit is Alive and Well

Seven Reasons Why Rover Challenge Is Serious Business

Just like the International Space Station; we bring the best of several nations together to promote and celebrate space exploration. Nearly 80 teams are coming from as far away as Italy, Germany, India, Mexico, Columbia and Russia, as well as more “local” talent from the United States and Puerto Rico. View this year’s registered teams HERE.

7. Real-time Racing on Social Media

Seven Reasons Why Rover Challenge Is Serious Business

From start to finish, each racing rover team will be broadcast, live, on the Marshall Center’s Ustream channel. Plus, enjoy real-time race updates, results and awards by following Rover Challenge Twitter: @RoverChallenge

NASA’s Human Exploration Rover Challenge will take place at the U.S. Space & Rocket Center in Huntsville, Alabama, April 8-9. For event details, rules, course information and more, please visit: http://www.nasa.gov/roverchallenge

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
In Temperatures That Drop Below -20 Degrees Fahrenheit, Along A Route Occasionally Blocked By Wind-driven

In temperatures that drop below -20 degrees Fahrenheit, along a route occasionally blocked by wind-driven ice dunes, a hundred miles from any other people, a team led by two of our scientists are surveying an unexplored stretch of Antarctic ice. 

They’ve packed extreme cold-weather gear and scientific instruments onto sleds pulled by two tank-like snow machines called PistenBullys, and after a stop at the South Pole Station (seen in this image), they began a two- to three-week traverse.

The 470-mile expedition in one of the most barren landscapes on Earth will ultimately provide the best assessment of the accuracy of data collected from space by the Ice Cloud and land Elevation Satellite-2 (ICESat-2), set to launch in 2018.

This traverse provides an extremely challenging way to assess the accuracy of the data. ICESat-2’s datasets are going to tell us incredible things about how Earth’s ice is changing, and what that means for things like sea level rise.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

Galactic Ghouls and Stellar Screams

A quiet, starry night sky might not seem like a very eerie spectacle, but space can be a creepy place! Monsters lurk in the shadowy depths of the universe, sometimes hidden in plain sight. Many of them are invisible to our eyes, so we have to use special telescopes to see them. Read on to discover some of these strange cosmic beasts, but beware — sometimes fact is scarier than fiction.

Monster Black Holes ⚫

image

You know those nightmares where no matter how fast you try to run you never seem to get anywhere? Black holes are a sinister possible version of that dream — especially because they’re real! If you get too close to a black hole, there is no possibility of escape.

Just last year our Fermi Gamma-ray Space Telescope traced an otherworldly ghost particle back to one of these monster black holes, providing additional insight into the many signals we’re picking up from some of the most feared creatures in the cosmic deep.

But it gets worse. Our Hubble Space Telescope revealed that these things are hidden in the hearts of nearly every galaxy in the universe. That means supermassive black holes lurk in the shadows of the night sky in every direction you look!

A Hazy Specter 👻

image

This fiendish specter lives in the center of the Milky Way, haunting our galaxy’s supermassive black hole. But it’s not as scary as it looks! Our SOFIA observatory captured streamlines tracing a magnetic field that appears to be luring most of the material quietly into orbit around the black hole. In other galaxies, magnetic fields seem to be feeding material into hungry black holes — beware! Magnetic fields might be the answer to why some black holes are starving while others are feasting.

Bats in the Belfry 🦇

image

The universe has bats in the attic! Hubble spotted the shadow of a giant cosmic bat in the Serpens Nebula. Newborn stars like the one at the center of the bat, called HBC 672, are surrounded by disks of material, which are hard to study directly. The shadows they cast, like the bat, can clue scientists in on things like the disk’s size and density. Our solar system formed from the same type of disk of material, but we can only see the end result of planet building here — we want to learn more about the process!

Jack-o-lantern Sun 🎃

image

A jack-o-lantern in space?! Our Solar Dynamics Observatory watches the Sun at all times, keeping a close eye on space weather. In October 2014, the observatory captured a chilling image of the Sun with a Halloweenish face!

Skull Comet 💀

image

On Halloween a few years ago, an eerie-looking object known as 2015 TB145 sped across the night sky. Scientists observing it with our Infrared Telescope Facility determined that it was most likely a dead comet. It’s important to study objects like comets and asteroids because they’re dangerous if they cross Earth’s path — just ask the dinosaurs!

Halloween Treat 🍬

image

Trick-or-treat! Add a piece of glowing cosmic candy to your Halloween haul, courtesy of Hubble! This image shows the Saturn Nebula, formed from the outer layers ejected by a dying star, destined to be recycled into later generations of stars and planets. Our Sun will experience a similar fate in around five billion years.

Witch’s Broom Nebula 🧹

image

Massive stars are in for a more fiery fate, as the Witch's Broom Nebula shows. Hubble’s close-up look reveals wisps of gas — shrapnel leftover from a supernova explosion. Astronomers believe that a couple of supernovae occur each century in galaxies like our own Milky Way.

Zombie Stars 🧟

image

Supernovae usually herald the death of a star, but on a few occasions astronomers have found “zombie stars” left behind after unusually weak supernovae. Our Nuclear Spectroscopic Telescope Array (NuSTAR) has even spotted a mysterious glow of high-energy X-rays that could be the “howls” of dead stars as they feed on their neighbors.

Intergalactic Ghost Towns 🏚️

image

The universe is brimming with galaxies, but it’s also speckled with some enormous empty pockets of space, too. These giant ghost towns, called voids, may be some of the largest things in the cosmos, and since the universe is expanding, galaxies are racing even farther away from each other all the time! Be grateful for your place in space — the shadowy patches of the universe are dreadful lonely scenes.

Mysterious Invisible Force 🕵️‍♀️

image

Some forces are a lot creepier than floorboards creaking or a door slamming shut unexpectedly when you’re home alone. Dark energy is a mysterious antigravity pressure that our Wide Field Infrared Survey Telescope (WFIRST) is going to help us understand. All we know so far is that it’s present everywhere in the cosmos (even in the room with you as you read this) and it controls the fate of the universe, but WFIRST will study hundreds of millions of galaxies to figure out just what dark energy is up to.

Want to learn some fun ways to celebrate Halloween in (NASA) style? Check out this link!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

As an astronaut who has been on a spacewalk before, what does the all-woman spacewalk mean to you?


Tags
9 years ago

Cassini Top 10 Images and Science Results of 2015

As our Cassini spacecraft enters its final 20 months before its plunge into Saturn, the mission’s science team has selected their top 10 images from 2015 (above), a year of historic discoveries, as well as the top science results (below). Take a look:

1. First Deep Seafloor Hydrothermal Vents Found Beyond Earth

image

Cassini found the first evidence of active hot-water chemistry beyond planet Earth. An extensive, four-year analysis of data from the spacecraft, computer simulations and laboratory experiments led researchers to the conclusion the tiny silica (SiCO2) grains most likely form when hot water containing dissolved minerals from the moon’s rocky interior travels upward, coming into contact with cooler water.

2. Global Ocean Beneath Enceladus’ Surface

image

A global ocean lies beneath the icy crust of Saturn’s geologically active moon Enceladus. Scientists analyzed more than seven years’ worth of images of Enceladus taken by the spacecraft, which has been orbiting Saturn since mid-2004. As a result, they found Enceladus has a tiny, but measurable wobble as it orbits Saturn. This proves that there must be a global layer of liquid separating the surface from the core.

3. Titan Observed Outside of Saturnian Magnetosphere

image

During Cassini’s flyby of Titan, the giant moon happened to be on the sunward side of Saturn when a powerful outburst of solar activity reached the planet. The strong surge in the solar wind so compressed the sun-facing side of Saturn’s magnetosphere that the bubble’s outer edge was pushed inside the orbit of Titan. This left the moon exposed to, and unprotected from, the raging stream of energetic solar particles. The region of space dominated by Saturn’s magnetic field is called the magnetosphere.

4. Density of a Ring Particles May Indicate Recent Origins

image

Saturn’s A ring was found to be warmer than expected at the planet’s equinox, and also had an unusually large thermal asymmetry about the equinox. This could be due to the A ring being mostly composed of denser particles made primarily of solid ice, with a thin top layer of fluffy regolith.

5. Titan Southern Polar Ice Cloud

image

Scientists have detected a monstrous new cloud of frozen compounds in Titan’s low- to mid-stratosphere – a stable atmospheric region above the troposphere, or active weather layer.

6. Curtain Vents on Enceladus?

image

New research using data from Cassini suggests most of the eruptions from Saturn’s moon Enceladus might actually be diffuse curtains rather than discrete jets. Many features that appear to be individuals jets of material erupting along the length of prominent “tiger stripe” fractures in the moon’s south polar region might be phantoms created by an optical illusion, according to the new study.

7. Discovery of Tethys Red Arcs

image

Like graffiti sprayed by an unknown artist, unexplained arc-shaped, reddish streaks are visible on the surface of Saturn’s icy moon Tethys. The origin of the features and their reddish color is a mystery to scientists.

8. Saturn’s 30-year Giant Storms Powered by Water Convection

image

Changes in temperature and the composition of the hydrogen-laden air within the remnants of a giant storm system on Saturn reveal that air was lofted more than 120 miles in altitude from the deeper water condensation levels.

9. Seasonal Change Seen at Saturn’s Poles

image

Saturn’s polar regions have displayed extreme seasonal changes during Cassini’s decade-long watch, providing the most comprehensive view ever obtained of seasonal change on a giant planet.

10. Huygens Probe Imaging Mosaic of Titan’s Surface and Descent Movie

image

Ten years ago, an explorer from Earth, the Huygens probe, was released from the Cassini spacecraft and parachuted into the haze of an alien moon toward an uncertain fate. After a gentle descent lasting more than two hours, it landed with a thud on a frigid floodplain on Titan, surrounded by icy cobblestones.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3 years ago

From Seed to Market: How NASA brings food to the table

Did you know we help farmers grow some of your favorite fruits, veggies and grains?

Our Earth-observing satellites track rainfall amounts, soil moisture, crop health, and more. On the ground, we partner with agencies and organizations around the world to help farmers use that data to care for their fields.

Here are a few ways we help put food on the table, from planting to harvest.

Planting

From Seed To Market: How NASA Brings Food To The Table

Did you plant seeds in science class to watch them sprout and grow? They all needed water, right? Our data helps farmers “see” how moist the soil is across large fields.

“When you’re not sure when to water your flowers or your garden, you can look at the soil or touch it with your hands. We are sort of ‘feeling’ the soil, sensing how much water is in the soil – from a satellite,

685 kilometers (408 miles) above Earth,” said John Bolten, the associate program manager of water resources for NASA’s Applied Sciences Program.

This spring, we worked with the U.S. Department of Agriculture and George Mason University to release Crop-CASMA, a tool that shows soil moisture and vegetation conditions for the United States. Able to see smaller areas – about the size of a couple of golf courses – the USDA uses Crop-CASMA to help update farmers on their state’s soil moisture, crop health and growing progress.

Growing

From Seed To Market: How NASA Brings Food To The Table

It’s dangerous being a seedling.

Heavy spring rains or summer storms can flood fields and drown growing plants. Dry spells and droughts can starve them of nutrients. Insects and hail can damage them. Farmers need to keep a close eye on plants during the spring and summer months. Our data and programs help them do that.

From Seed To Market: How NASA Brings Food To The Table

For example, in California, irrigation is essential for agriculture. California’s Central Valley annually produces more than 250 types of crops and is one of the most productive agricultural regions in the country – but it’s dry. Some parts only get 6 inches of rain per year.

To help, Landsat data powers CropManage – an app that tells farmers how long to irrigate their fields, based on soil conditions and evapotranspiration, or how much water plants are releasing into the atmosphere. The warmer and drier the atmosphere, the more plants “sweat” and lose water that needs to be replenished. Knowing how long to irrigate helps farmers conserve water and be more efficient. In years like 2021, intense droughts can make water management especially critical.

Harvest

Leading up to harvest, farmers need to know their expected yields – and profits.

GEOGLAM, or the Group on Earth Observations Global Agricultural Monitoring Initiative, is a partnership between NASA Harvest, USDA’s Foreign Agricultural Service (FAS) and other global agencies to track and report on crop conditions around the world.

USDA FAS is one of the main users of a soil moisture measurement product developed by Bolten and his team at our NASA Goddard Space Flight Center to drive their crop forecasting system.

If you’re interested in more ways we support agriculture, stay tuned over the next few weeks to learn more about how satellites (and scientists) help put snacks on your table!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

Counting Down to the Solar Eclipse on August 21

On Aug. 21, 2017, everyone in North America will have the chance to see a solar eclipse if skies are clear. We’re giving you a preview of what you’ll see, how to watch and why scientists are particularly excited for this eclipse.

image

On Aug. 21, within a narrow band stretching from Oregon to South Carolina – called the path of totality – the Moon will completely obscure the Sun, giving people on the ground a view of the total solar eclipse. Outside this path – throughout North America, and even in parts of South America – the Moon will block only a portion of the Sun’s face, creating a partial solar eclipse.

image

Image credit: T. Ruen

Eclipses happen when the Moon, Sun and Earth line up just right, allowing the Moon to cast its shadow on Earth. Because the Moon’s orbit is tilted with respect to the Sun-Earth plane, its shadow usually passes above or below Earth. But when they all line up and that shadow falls on Earth, we get a solar eclipse.

image

How to Watch the Eclipse Safely  

It’s never safe to look directly at the un-eclipsed or partially eclipsed Sun – so you’ll need special solar viewing glasses or an indirect viewing method, like pinhole projection, to watch at the eclipse.

image

If you’re using solar viewing glasses or a handheld solar filter, there are a few important safety tips to keep in mind:

Check a few key characteristics to make sure that you have proper solar filters – sunglasses (even very dark ones) or homemade filters are NOT safe  

Double-check that your solar filter is not scratched or damaged before you use it

Always put your solar filter over your eyes before looking up at the Sun, and look away from the Sun before removing it 

Do NOT use your solar filter while looking through telescopes, binoculars, or any other optical device, such as a camera viewfinder – the concentrated solar rays will damage the filter and enter your eyes, causing serious injury

Get all the details on safety at eclipse2017.nasa.gov/safety.

No solar viewing glasses? Pinhole projection is an easy and safe way to watch the eclipse. You can create a pinhole projector from a box, or simply use any object with tiny holes – like a colander or a piece of cardstock with a hole – to project an image of the Sun onto the ground or a piece of paper.

image

If you are in the path of totality, there will come a time when the Moon completely obscures the Sun’s bright face. This is called totality, and it is only during this phase – which may last only a few seconds, depending on your location – that it is safe to look directly at the eclipse.

Wherever you are, you can tune into nasa.gov/eclipselive throughout the day on Aug. 21 to hear from our experts and see the eclipse like never before – including views from our spacecraft, aircraft, and more than 50 high-altitude balloons.

A Unique Chance for Scientists

Total solar eclipses provide a unique opportunity to study the Sun and Earth. During a total eclipse, the lower parts of the Sun's atmosphere, or corona, can be seen in a way that cannot completely be replicated by current human-made instruments.

The lower part of the corona is key to understanding many processes on the Sun, including why the Sun’s atmosphere is so much hotter than its surface and the origins of the Sun’s constant stream of solar material and radiation – which can cause changes in the nature of space and impact spacecraft, communications systems, and orbiting astronauts.

image

Photo credit: S. Habbal, M. Druckmüller and P. Aniol

For those in the path of totality, the few moments of the total solar eclipse will reveal the Sun’s atmosphere, the corona. 

Total solar eclipses are also a chance to study Earth under uncommon conditions: In contrast to the global change in light that occurs every day at dusk and dawn, a solar eclipse changes illumination of Earth and its atmosphere only under a comparatively small region of the Moon’s shadow. This localized blocking of solar energy is useful in evaluating our understanding of the Sun’s effects – temperature, for example – on our atmosphere. Of particular interest is the impact on Earth’s upper atmosphere, where solar illumination is primarily responsible for the generation of a layer of charged particles called the ionosphere.

image

We’re also inviting eclipse viewers around the country to become citizen scientists and participate in a nationwide science experiment by collecting cloud and air temperature data and reporting it via the GLOBE Observer smartphone app.

For more eclipse info, visit eclipse2017.nasa.gov and follow @NASASun on Twitter and NASA Sun Science on Facebook.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago
Spotted: Signs Of A Planet About 28 Million Light-years Away 🔎 🪐

Spotted: signs of a planet about 28 million light-years away 🔎 🪐

For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.

This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.

This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.

Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Chasing Storms at 17,500mph

Flying 250 miles above the Earth aboard the International Space Station has given me the unique vantage point from which to view our planet. Spending a year in space has given me the unique opportunity to see a wide range of spectacular storm systems in space and on Earth. 

The recent blizzard was remarkably visible from space. I took several photos of the first big storm system on Earth of year 2016 as it moved across the East Coast, Chicago and Washington D.C. Since my time here on the space station began in March 2015, I’ve been able to capture an array of storms on Earth and in space, ranging from hurricanes and dust storms to solar storms and most recently a rare thunder snowstorm.

Chasing Storms At 17,500mph

Blizzard 2016

Chasing Storms At 17,500mph

Hurricane Patricia 2015

Chasing Storms At 17,500mph

Hurricane Joaquin 2015

Chasing Storms At 17,500mph

Dust Storm in the Red Sea 2015

Chasing Storms At 17,500mph

Dust Storm of Gobi Desert 2015

Chasing Storms At 17,500mph

Aurora Solar Storm 2015

Chasing Storms At 17,500mph

Aurora Solar Storm 2016

Chasing Storms At 17,500mph

Thunderstorm over Italy 2015

Chasing Storms At 17,500mph

Lightning and Aurora 2016

Chasing Storms At 17,500mph

Rare Thunder Snowstorm 2016

Follow my Year In Space on Twitter, Facebook and Instagram.

Loading...
End of content
No more pages to load
  • wannabesewcrafty
    wannabesewcrafty reblogged this · 1 month ago
  • kailyndavillier
    kailyndavillier liked this · 1 month ago
  • fridge246
    fridge246 liked this · 1 month ago
  • the-chickenshit-oddity
    the-chickenshit-oddity reblogged this · 1 month ago
  • notwiselybuttoowell
    notwiselybuttoowell reblogged this · 1 month ago
  • possibility221
    possibility221 reblogged this · 1 month ago
  • possibility221
    possibility221 liked this · 1 month ago
  • justforfollowingpeople
    justforfollowingpeople liked this · 1 month ago
  • sanguinarysanguinity
    sanguinarysanguinity liked this · 1 month ago
  • sanguinarysanguinity
    sanguinarysanguinity reblogged this · 1 month ago
  • nairobiwonders
    nairobiwonders liked this · 1 month ago
  • amindamazed
    amindamazed reblogged this · 1 month ago
  • garlicsaltissuperior
    garlicsaltissuperior reblogged this · 2 years ago
  • nicegoinglife
    nicegoinglife reblogged this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags